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Zhang et al., 2004 

Impacts of CO2 + Brine Leakage 



Experiments to evaluate potential release of trace 
metals in the injection formation (high P & T).   

 

Experiments to understand impacts of CO2 leakage 
on aquifer water quality at the leak location. 

  - Carbonate and sandstone aquifers 
 

Screening level assessment of potential impacts of 
brine leakage using national database. 

 

Multiphase, multi-species reactive-transport 
modeling to assess human-health risk of 
potentially released metals 

Project Work Accomplished  
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   Carbonate Aquifers 

Basin-and-
Range 

Carbonate  

Edwards-Trinity 
(High Plains) 

Arbuckle-
Simpson 

Ozark Plateaus  

“Silurian-
Devonian” 

Biscayne 

Castle Hayne-
Aquia 

“Mississippian” 

Floridan 
Aquifer 
System 

Piedmont, 
Blue Ridge 

… Supply 20-25% of earth’s 
drinking water; 17% for U.S. 
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Carbonate Aquifers… 
…have been largely ignored in leakage scenarios 

– expect pH buffering as carbonate dissolves 

3( ) ( ) ( ) 3 ( )s aq aq aqCaCO H Ca HCO+ + −+ ↔ +



9 

Previous Works…  

Wang, S., Jaffe, P.R., 2004. 
Dissolution of a mineral phase in 
potable aquifers due to CO2 
releases from deep formations; 
effect of dissolution kinetics. 
Energy Conversion and 
Management 45, 2833-2848. 

Wilkin, R.T., DiGiulio, D.C., 2010. Geochemical 
Impacts to Groundwater from Geologic Carbon 
Sequestration: Controls on pH and Inorganic 
Carbon Concentrations from Reaction Path and 
Kinetic Modeling. Environmental Science & 
Technology 44, 4821-4827. 
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Impurities in Calcite 
3( ) ( ) ( ) 3 ( )s aq aq aqCaCO H Ca HCO+ + −+ ↔ +

Ca substitution, 
charge compatible 

CO3 substitution 

2
1 3 1 3 ( ) ( ) ( ) ( ) 3 ( ) 3 ( )( ) ( ) (1 ) (1 )z z

x x y y s aq aq aq aq aqCa M CO MO H x Ca xM y HCO yMO+ + + − −
− − + ↔ − + + − +
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Conceptual Model:   
Metals are released from dissolving calcite, exposing 
pyrite and other minerals, which also release metals 

 
Research Question:   

How much does each mineral phase contribute? 



Experimental Work 
Characterization (What’s in the rock?) 

QEMSCAN 
Optical 

Microscope LA-ICP-MS 

XRD Sequential 
Extraction 

FE-SEM 
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Rock Characterization for Carbonates 

“Beaker 2” –  
Kindblade Limestone 

“Beaker 1” – 
Joins Limestone 

Mineral Abundance (%) 
Joins  Kindblade:  

Calcite 77.04 89.23 
Quartz 7.04 3.58 
Clay 6.65* 0.43 
Dolomite 4.68 5.58 
Feldspar 2.25 0.01 
Calcite (Mg-Bearing) 1.94 1.12 
Pyrite 0.20 0.03 
Ca-SO4/Anhydrite/Gypsum 0.13 0.01 
Others 0.07 0.01 
Apatite 0.01 0.00 

BET Surface Area (m2/g) 0.245 0.152 
* Illite / 

Glauconite 

5 mm 5 mm 

0.5 mm 
0.5 mm 

Control - 
>99.999% 

Pure CaCO3  
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Results 
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Placing the experimental results in context:  
    Dissolution of “dirty” pyrite vs.“clean” calcite 

•  Carbon sequestration operations could occur over 30 years. 
 

•  Use a geochemical model (PHREEQC) to extrapolate 
experimental results to longer time periods 
 

•  Develop reliable conceptual and mathematical models 
 

•  First step, do the QEMScan mineral assemblages enable us to 
simulate our experimental data? 
 

•  Adjust and parameterize model to simulate long-term impacts 
of leakage under simple conditions. 
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Long-Term Predictions 
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Higher concentration of impurities in Pyrite 

Pyrite/Calcite 
Cr 1.49 
Co 29.06 
Ni 24.12 
As 74.82 
Rb 2.45 
Sr 1.06 
Tl 20.72 
Pb 20.43 
U 9.46 



Cumulative Cobalt Release from Calcite 
Cumulative Cobalt Release from Pyrite 
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Pyrite dissolution is more sensitive to oxidizing 
conditions.  Our experiments were under 
conducted under somewhat reducing conditions, 
but many aquifers have oxidizing conditions. 

Use modelling to investigate the influence : 
 
pO2 varied up to -2.5  (D.O. ~ 0.15 mg/L) 
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Conceptual Model for Pyrite dissolution 
in Oxidizing aquifers 

Carbonate dissolves to 
expose pyrite that did 
not previously participate 
in the dissolution 
process. 



Cobalt Release from Calcite 
Cobalt Release from Pyrite 

Reducing 
Conditions 

Oxidizing 
Conditions 
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Arsenic 

Barium 

Days 
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Conclusions: CO2 Leakage into Limestone 

• Carbonate minerals can buffer pH at elevated pCO2,  but at the “cost” of 
carbonate minerals dissolution. 

• In both short and long term, calcite dissolution controls release of 
several trace elements in carbonate aquifers, BUT   

• Most trace elements did not exceed MCL (exceptions: Cr, As, Ni) 

• Dissolution of carbonate minerals contributes to release of metals. 

• Under oxidizing conditions, pyrite is the major metal source (as  
  expected) 

• Experiments could be successfully modeled using PHREEQC if the 
appropriate rate expressions were chosen.   



4 types of experiments:    Limestones, Dolomites, 
Clayey Limestones, Silliclastic Rocks  
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CO2 Leakage into Siliclastic Aquifer Rocks  

TMM 

FCC1 

FCC2 

Pressured leakage experiments for 
aquifer sandstone sediments 

Sequential extractions to understand 
specific mechanism of metal release 

Outcrop of the Mesaverde Group 

Katie Kirsch, Alexis Sitchler, Assaf Wunsch, John McCray 



Significant pH buffering 
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Experiment 1: 
(0.01 bar CO2) 
 

Experiment 2: 
(1.0 bar CO2) 
 

control 

control 

carbonate 
dissolution? 

0.10 mm 



Carbonate dissolution – likely source of 
metals 
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Arsenic 
 

(MCL: 0.010 ppm) 

FCC2 
FCC2 



Conclusions:   
CO2 Leakage into Sandstone 
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Sandstones may have a significant pH buffering 
capacity, probably due to carbonate cement. 
 
Metals are released after CO2 exposure, 
although MCL concentrations were not achieved 
in these batch-”equilibrium” experiments. 
 
Carbonates are a significant source, along with 
oxides. 
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Δ
P Δ
PΔ

PΔ
P

Δ
P

CO2

Brine

Δ
P

Caprock 

Saline leakage may occur far outside CO2 plume 

CO2 

plume 
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Drinking Water and Agricultural Impacts 

Data from: Kenny, J.F., N.L. Barber, S.S. Hutson, K.S. Linsey, J.K. 
Lovelace, and M.A. Maupin. 2009. Estimated use of water in the 
United States in 2005. U.S. Department of the Interior, U.S. 
Geological Survey, Circular 1344. 
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Parameter n Median 
95th 

Percentile 
Regulatory  

Value 
Percentage Above  
Regulatory Value 

Cl 49634 50,900 160,000 250b 98.0 

Fe 2213 7 431 0.3b 78.4 

Mn 878 0.07 124 0.05b 53.0 

NO3 54 11 84 10a 51.2 

SO4 43024 549 5300 250b 63.55 

TDSf 46990 84407 251662 500b 100 

pH 37958 7.10 5.6 / 8.21e 6.5<pH<8.5b 
74.98% are within 
regulatory limits 

Drinking Water Statistical Analysis 

a EPA maximum contaminant level (MCL) for drinking water 
b EPA secondary standard for drinking water 
D f Total dissolved solids, in mg/L 

o “Representative values”  (medians) were mostly below regulatory limits 
for  drinking water 

 
o Except… 
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Cumulative Frequency Diagrams 



Selected Conclusions: Drinking Water 
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Median concentrations of 
chloride, iron, manganese, 
sulfate and nitrate are expected 
to exceed regulatory standards.  
 
Arsenic - low risk of exceeding 
regulatory levels. However, 
overall distributions span orders 
of magnitude above regulatory 
levels, causing concern even 
upon dilution with fresh 
groundwater. 

TDS concentrations in aquifers may exceed USEPA 
secondary standard for a brine fraction > 0.004.   

pH not a good indicator for brine leaks into aquifers.   
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Agricultural Impacts:  Boron 

http://www.agnet.org/library.p
hp?func=view&id=2011080409
4714&type_id=2 
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(1 )mix b b b wTDS f TDS f TDS= + −

Agricultural Impacts:  Total Dissolved Solids 



Selected Conclusions: Agriculture 
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A brine fraction of 0.1 in a 
brine-aquifer mixture, will 
cause reduction in crop 
yield of most US crops due 
to salinity.  
 
Some crops may become 
affected at brine fractions as 
low as 0.004.  
 
High boron concentrations 
may affect crop 
development.  
 

Iron- or manganese-rich brine 
may damage irrigation pipes 
through precipitation of oxides. 



Questions? 

R834387
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